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Abstract. Artificial Intelligence (Al) has changed how the financial market
operates, particularly in High-Frequency Trading (HFT) and autonomous
execution. While Al enhances liquidity, speed, and price discovery, it also
causes new systemic vulnerabilities. This paper investigates how Al
operates as a risk amplifier in financial markets and suggests a novel
conceptual framework that integrates transmission risks with governance
principles. The paper connects Al-driven mechanisms with systemic
outcomes. Drawing on literature, institutional reports, and historical
incidents such as the Flash Crash on 6" May 2010, the study underscores
important transmission risks such as feedback loops, model opacity, flash
crash, algorithmic herding, and regulatory gaps. To mitigate these risks
and to reap the benefits of technology, the study proposes a framework
that prioritises explainability, accountability, and transparency, model
diversity, layered monitoring, stress testing, flexible macroprudential
supervision, and international harmonisation. By aligning with previous
studies and regulatory warnings, this research contributes to academic
discourse and provides practical insights for policymakers aiming to strike
a balance between Al-driven efficiency and systemic stability.
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1. Introduction

hat is the mantra for success in highly volatile financial markets?
Part of the answer would be adopting Artificial Intelligence (Al)
for analysis and decision-making. Al plays a key role in the success
of every business in the modern world. Along with the advantageous
outcomes such as increased productivity, better decision-making, and tailored
customer experience, it also carries demerits such as job displacements, moral
guandaries, and security risks (Shrinivas & Shetty, 2024). Al software can
perform almost all the actions that a human being can do, starting from basic
mechanical tasks to the most complicated operations, such as investment advice.
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Al allows algorithms to develop strategies, missing the benefit of human intuition by processing a large,
diverse set of data autonomously (Vincent, 2021). As a result, multiple Al companies deploying similar
Al systems may create algorithmic herding behavior, amplifying volatility through synchronized
trading behaviour (Serrano, 2020). This connection is supported by strong empirical evidence. A
structured review of European data finds that intraday volatility increase of 05 — 0.8 standard deviation
(4-6 percentage points anualised) correlates with a standard deviation increase in High Frequency
Trading (HFT), especially from purely HFT firms (Serrano, 2020). Agent-based simulations further
demonstrate how algorithmic interaction during periods of market stress replicates the mechanics of
flash crashes, with market fluctuations matching the real-world scenario like May 6, 2010 (Gao et al.,
2024). Feedback loops and liquidity evaporation across the market may be created due to Al strategies,
simultaneous triggers of de-risking, or circuit break actions, which reduce liquidity abruptly
(International Monetary Fund, 2024). This kind of mechanism will intensify the systemic vulnerability
from a localised algorithmic failure to an interdependent market collapse. The regulatory bodies are
sounding alarms about these risks. The Bank of England’s Financial Policy Committee (FPC) warns
that the widespread use of uniform Al models may heighten the correlation among firms and intensify
shocks, undermining resilience (Bank of England, 2025). Al-driven trading may culminate in weak
shared datasets, increasing systemic risks while posing oversight challenges (Svetlova, 2022). The
analysis done by Danielsson et al. (2022) underscores the misalignment between localised efficiency
gains and macroprudential stability. They argue that the pursuit of optimization of Al could lead to
results that are less beneficial to society and may lead to possible concealed systemic crises.

Despite the considerable focus on the topic, research still lacks an integrated conceptual framework that
systematically connects Al implementation in high-frequency trading or autonomous trading with
systematic risk outcomes through defined transmission channels. Most existing research tends to
concentrate on isolated incidents or narrow empirical indicators, often neglecting risk governance
design, the opacity of Al structures, or policy recommendations guided by systems theory. This paper
addresses the gap by presenting a conceptual framework that highlights key risk conduits, such as
algorithmic herding, feedback loops, the propagation of flash crashes, model overfitting, and inadequate
human oversight. It also illustrates how these conduits lead to systemic consequences, including market
volatility, liquidity crises, cross-market contagion, and regulatory blind spots. The study aims to
investigate the relationship between Al model opacity and human/regulatory visibility, underscoring
the limitations of governance and outlining principles for a risk-based Al governance framework,
including layered monitoring, stress testing, encouraging Al model diversity, and requiring
transparency. In addition to providing useful information to regulators such as central banks, security
authorities, and macroprudential bodies, the aim is to advance the scholarly discourse on how Al-
powered automated trading systems may increase systemic risk.

2. Theoretical Framework

The intersection of Al, HFT, and systemic risk has drawn considerable scholarly attention. A growing
section of research assesses how autonomous trading systems amplify financial fragility through
algorithmic uniformity, feedback loops, and model opacity. A systematic review of literature highlights
the rapid increase of Al methods, including deep learning and reinforcement learning in financial
trading, notably in HFT (Dakalbab et al., 2024). It also reveals how trading methods are fully automated,
leveraging Al’s ability to process large sets of data. Although Al improves liquidity and prediction
accuracy, it also raises concerns over an excessive reliance on historical patterns as well as the model’s
vulnerability to overfitting and failure. Researchers emphasise algorithmic herding, which happens
when several organisations deploy similar Al models based on overlapping data, resulting in
coordinated trade that magnifies market volatility (Bank of England, 2025b; Ogbuonyalu et al., 2024).
This integration reduces market diversity and may result in flash crashes or liquidity spirals. Al-powered
black-box trading algorithms become enraged and all end up selling the same thing at the same time,
causing a crash in the market (International Monetary Fund, 2024). It’s a known fact that high-frequency
trading itself has long been associated with a significant amount of intraday volatility and liquidity
instability, especially during market stress. Now, with the introduction of autonomous trading and
execution of trade at the same time and the same pattern using Al models has amplified these
circumstances. On May 6, 2010, the U.S. financial market experienced an intraday systemic event, a
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Flash Crash, due to automated execution of a large selling program in E-mini S&P 500 stock index
futures (Kirilenko et al., 2017).

How an Al system can be manipulated or destabilised is illustrated by studies on adversarial
vulnerabilities. Research from Nehemya et al. (2021) shows how the erroneous model behaviour can
be provoked by an adversarial perturbation to input data streams, opening new channels for systemic
risk. Similar to this, a study from Goldblum et al. (2022) highlights the vulnerability of these models in
a fragile environment and the prospects of cascading trading errors in their discussion of realistic
assaults against machine learning systems in HFT. Regulatory bodies have been giving warnings of Al-
related systemic risk. Security and Exchange Commission (SEC) (2023) comments that Al trading
shares a weakness of common data sets, which could lead to the convergence of Al systems that result
in risky strategies and magnify systemic fragility. Likewise, the FPC of the Bank of England points out
the vulnerabilities, such as collusion and correlated model errors, to illustrate the risk that autonomous
Al actors might unintentionally trigger market crises and profit from them (Bank of England, 2025a).
In their systematic literature review of Al governance, Batool et al. (2025) stress the importance of
aligning policy mechanisms, accountability, and transparency across model life cycles. However, they
note that there are few frameworks specifically addressing the risk in trading contexts. By contrasting
international regulatory approaches to Al in finance, such as the European Union Artificial Intelligence
(EU Al) Act, U.S. SEC policy, and Financial Conduct Authority (FCA) principles, Mirishli (2024a)
deepens this gap and highlights the necessity of flexible risk-based governance capable of connecting
innovation with systemic safety.

While the current literature discusses the discrete aspects like execution efficiency, liquidity volatility,
adversarial vulnerabilities, and regulatory intent, it lacks a comprehensive conceptual model that
connects Al-driven HFT systems to systemic risk outcomes via a well-defined transmission mechanism.
The majority of studies are descriptive or empirical and do not incorporate conceptual risk architecture
or governance analysis. Theoretical concerns related to the macro-level effects of model
homogenisation and optimisation misalignment are expressed in scholarly work done by Danielsson et
al. (2022) and Ozili (2024), but they stop short of operationalising these mechanisms for governance
analysis. The systematic review by Lakhchini et al. (2022) and Ahmed et al. (2022) emphasize the
technical application and the success of predictive modelling, but emergent fragility and risk
aggregation are rarely discussed. Thus, the need for a conceptual risk transmission framework that
bridges the fields of Al model behaviour, trading dynamics, systemic outcomes, and regulatory
responses has been identified by this theoretical framework, which closes an obvious gap in the
discourse that is relevant to both academia and policy.

3. Methodology

This study adopts a qualitative, conceptual methodology based on the literature review from peer-
reviewed journals, regulatory reports, and institutional publications. For the literature review, the papers
were selected from the reputed databases such as Scopus, Web of Science, and Science Direct with
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keywords including “Al in finance”, “high frequency trading”, “systemic risks”, “risk amplifier”, flash
crash”, “algorithmic herding”, ‘financial instability”, and “autonomous trading”. The papers were
considered only if they addressed Al-enabled or algorithmic trading mechanisms, systemic vulnerabilities,
transmission risks, governance, or regulatory responses. Only English language sources were selected.

Studies focusing only on model architecture without systemic implications were excluded.

To identify systemic risk channels, evidence from recent studies was integrated with historical incidents
such as the 2007 Quant Meltdown and 2010 Flash Crash. By combining these observations, the study
proposes a conceptual framework that connects systemic vulnerabilities and Al-driven HFT
mechanisms. The study also provides governance practices to minimise the risk.

4. Proposed Risk-Transmission Channels in Al-Augmented Trading

Systemic risk can be amplified through a new transmission mechanism brought about by the growing
use of Al in financial markets, especially in HFT and autonomous trading systems. The main conceptual
pathways through which Al can worsen weakness in market stability and structure are identified and
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explained in this part (see Figure 1). The channels can interact to produce intricate feedback loops that
exacerbate systemic volatility; they are not always independent. Similar data sets and goals, such as
maximising profits and minimising volatility, are usually used to train the Al trading systems, especially
those based on machine learning and deep learning. Even if it is not an intended outcome, algorithmic
convergence can result from the deployment of Al agents by multiple market participants that are
designed on overlapping strategies, producing herding behaviour (Ozili, 2024). In times of market
stress, this type of autonomous herding can cause systemic risk. For example, several Al systems may
execute large volumes of trade in the same direction if they simultaneously detect a market shift or
anomaly, which could worsen price swings and possibly lead to flash crashes (Gayduk & Nadtochiy,
2017). As opposed to conventional herding, Al-driven convergence can happen almost swiftly,
providing market players and regulators little opportunity to respond.

The feedback loops are created due to relying on real-time data to update Al models and make trading
decisions. When Al algorithms influence market price through autonomous trading, it becomes input
for future decisions. The market can become uncertain due to recursive feedback mechanisms,
particularly when volatility is high. Agent-based simulations illustrate how recursive learning makes
disproportionately huge market movements by amplifying reactions to the small shocks (Gao et al.,
2024). In an inactive market, where even a small Al-driven transaction may have a significant impact
on prices, this is especially problematic. Moreover, contagion across the market could result from these
feedback effects spreading to different asset classes and geographical regions (Serrano, 2020). Al-
powered high-frequency trading has previously been linked to a number of market anomalies, including
flash crashes. The 2010 Flash Crash showed how algorithmic trading may quickly drain liquidity and
lead to market volatility. As Al has become more common in the present market, the speed and
execution risks have also grown (Leal et al., 2015). Al trading systems may unintentionally create
instability in the market if their risk models fail to adequately account for uncommon or outlier events.
Moreover, many Al trading systems operate as “Black Boxes”, meaning it is difficult to decipher the
decision logic used by them, which in turn results in unpredictable behaviour when the market is under
stress (International Monetary Fund, 2024; Khan et al., 2025). Model homogeneity is another risk
transmission channel. Financial organisations use similar Al models or frameworks for operations such
as risk assessment and trade execution due to industry norms and regulatory compliance. This results
in less diverse decision-making and raises the chances of systemic failure during times of stress. When
dealing with external factors such as cyberattacks or geopolitical events, monoculture Al models may
result in synchronised trading decisions and systemic shocks. The market might show a non-linear
collapse dynamic rather than a normal steady decline as a result (Danielsson et al., 2022).

Sometimes the financial market is truly unpredictable. Al models used in these financial markets to
overoptimise patterns in historical data, which may not hold true in future market conditions. This may
result in short-term gains but makes models fragile to black swan events (rare, unpredictable, and high
impact) or regime shifts (Vancsura et al., 2025). It is very important to note that Al models outside of
their training environments can become vulnerable. Whenever there is an unprecedented change in the
market, the overoptimised system might take unwarranted risks or not react swiftly, leading to systemic
disruptions (Zhang et al., 2018). The intensity with which Al models are being developed surpasses the
regulatory oversight. The algorithms develop way faster than the regulations. The authorities might not
have enough technical literacy or real-time data to detect systemic risk arising from Al autonomous
trading. This diminishes the effectiveness of macroprudential policies by creating information
asymmetry between regulators and market participants (International Monetary Fund, 2024).
Furthermore, the dynamic and adaptive nature of Al systems is not yet accommodated by most
regulatory frameworks. As the financial market is interconnected globally, Al-driven risk in one
jurisdiction can quickly spread to others, creating transnational systemic risk. The absence of
harmonised global standards further complicates this matter (Mirishli, 2024b).

The above-discussed risk transmission channels show that Al is just not another technological upgrade
in the financial market, but a paradigm-shifting force that has the capacity to cause systemic risks
through novel mechanisms, rather than merely being another tool built by human beings to ease the
tasks relating to financial markets. Understanding these transmission pathways is necessary to design
an efficient and effective governance framework, regulatory reactions, and risk mitigation techniques.
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Figure 1
Conceptual Framework: Al as Risk Amplifier in High-Frequency Trading

Al Mechanisms Systemic Outcomes Governance Response

Algorithmic Herding
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5. Supporting Empirical and Institutional Evidence

Several transmission channels through which Al augmented trading can cause systematic vulnerabilities
have been identified in this conceptual framework. Both academic research and institutional white
papers provide evidence supporting these mechanisms. According to historical data, automated trading
can cause rapid, self-reinforcing price moves when liquidity vanishes. The joint Commodity Futures
Trading Commission (CFTC)-Securities and Exchange Commission (SEC) forensic report on the May
6, 2010 “Flash Crash” states that an archetypal feedback loop was created when automated order
execution, aggressive selling, and withdrawal of liquidity providers integrated to cause an immediate
price dislocation followed by an equally swift rebound (Commissions, 2010). Using audit trail data
from CME’s E-mini S&P 500 futures during the Flash Crash, Kirilenko et al. (2017) demonstrated that
HFT initially provided liquidity before swiftly switching to consuming it, which increased the intraday
price dislocation once selling pressure spiked. Based on European Securities and Markets Authority
(ESMA)’s risk surveillance, liquidity is still brittle during periods of market stress, which raises the
possibility that algorithmic behaviour will accelerate price changes on European Union markets
(Authority, 2024). The Bank for International Settlements (BIS) recorded how venue microstructure
and execution algorithms can magnify order flow imbalances during market stress by channelling
shocks via order book dynamics, such as abrupt changes in market-making behaviour and queue priority
(Bank for International Settlements, 2020). A “fragile market liquidity” backdrop where sharp
corrections are still possible is frequently highlighted in ESMA’s Trends, Risks and Vulnerabilities
(TRV) report (Authority, 2024). While automated trading improves liquidity and informational
efficiency, it also raises short-horizon volatility, which is a significant channel for intraday
amplification when shocks occur (Boehmer et al., 2021). These findings collectively show that liquidity
risks are not historical anomalies but remain a present-day concern in Al-augmented markets.

Algorithmic herding and convergence are the most common issues discussed by researchers and
institutions. Similar quantitative models can amplify losses when market conditions change, as
evidenced by scholarly work on strategy crowding. According to Khandani and Lo (2011), funds
employing comparable factor models unwound concurrently during the August 2007 “Quant
Meltdown,” resulting in a chain reaction of losses. Authorities warn that the widespread use of
comparable Al models may lead to correlated behaviour that intensifies shocks. Focusing on the shared
data, features, or model providers can make it more likely for the firms to “move together,” increasing
market fragility and opening the door for correlated errors or even unintentional collusion among agents
(Bank of England, 2025b). Supervisory concerns about the rapid scaling of Al deployments can
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synchronise decision rules across venues and intermediaries, possibly reducing diversity of responses
under market stress, and are also documented in the International Organization of Securities
Commissions (IOSCO)’s 2025 Capital-Market Report (International Organization of Securities
Commissions, 2025). In this context, the main risk is not just individual model failure but the systemic
impact of synchronized behavior across firms.

Automated trading increases short-horizon volatility while improving average liquidity. This is the
mechanism through which shocks in one venue quickly shifted to others via statistical-arb and latency-
arb links (Boehmer et al., 2021). Disturbances don’t have to stay local when risk controls and strategies
are coordinated through similar Al pipelines. The political and macro shocks quickly spread across the
instruments and venues when liquidity is limited and systems are closely connected (Authority, 2024).
Al-enabled capital market structure raises the possibility of interconnectedness. When firms source
models or model components from a concentrated set of providers, operational or modeling errors can
scale across asset classes (International Monetary Fund, 2024). Additionally, the Bank of England also
warns that relying too much on a limited number of cloud platforms or third-party model providers can
lead to common dependence that can create issues that become system-wide disruptions (Bank of
England, 2025a). This suggests that Al is accelerating cross-market contagion by tightening both
technical and behavioral linkages among trading systems.

When Al automated trading executes an order, there is a problem of explainability. Advanced Al models
are dynamic and adaptive, learning from new input data production, which makes ex-post
reconstruction of decisions more complicated and increases governance demand (Bank of England,
2025b). When models change after they are deployed, Al and machine learning in finance create unique
challenges related to accountability, transparency, and validation, suggesting supervisory blind spots in
the absence of improved controls (Board, 2017). A study from Fritz-Morgenthal et al. (2022) highlights
the black box’s explanatory gaps. Supervisors demand Explainable Al (XAI) setups like SHAP
clustering because they cannot understand or they don’t have the ability to question how Al systems
make up decisions, but even these setups require supervisors to learn new skills and assume additional
modeling risk. Also, it’s very important to note that XAl techniques help, but they don’t completely
eliminate the risk of model opacity (Vancsura et al., 2025). The disparity between regulatory toolkits
and the quick development of Al is a common theme. Model concentration risk, agent autonomy, and
cross-firm dependencies are among areas where the perimeter must adjust, and the FPC specifically
frames Al as a financial stability issue (Bank of England, 2025a). The use of Al in finance creates
systematic risks that are impossible for microprudential tools to identify. They expose a regulatory
misalignment between local efficiency and global resilience and demonstrate how Al optimization can
jeopardise systemic stability (Danielsson et al., 2022). According to IOSCQO’s reports, intermediaries
and asset managers should be held responsible for proportionate, risk-based governance of Al and
machine learning, with supervisors concentrating on testing, oversight, accountability, and keeping
records to allow for post-hoc review of automated decisions (International Organization of Securities
Commissions, 2021). According to the Financial Stability Board’s (FSB) (2017) foundational work, in
order to capture system-wide externalities, the financial stability perspective (macroprudential) must be
used along with micro conduct and model-risk controls. To keep up with rapidly changing markets,
regulation needs to become more adaptive, driven by data and Al-enabled (O’Halloran & Nowaczyk,
2019). Truby et al. (2020) argue that there is insufficient reactive regulation. The precautionary principle
must be adopted by regulators toward Al in the financial market. The research also points out that the
laws around innovation usually emerge after the crisis, but in markets like high-frequency trading,
delayed intervention may lead to risks that are uncontrollable. Goldblum et al. (2022) demonstrate
experimentally that robustness in HFT environments can be undermined by even a small adversarial
perturbation, which can destabilise deep learning trading models. This is supported by Nehemya et al.
(2021), who show that order-book data can be manipulated in the opposite direction to distorted
outcomes. Financial Al and machine learning systems are seriously impacted by data poisoning attacks.
The discussion about systemic fragility in the presence of hostile data intervention is further supported
by the fact that even a small, well-planned tweak of input labels can compromise deep learning
architectures in particular (Gallagher et al., 2022). Together, these studies highlight a widening gap
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between technological capability and regulatory oversight, underscoring the urgency for adaptive
supervision.

This evidence from academic publications and institutional reports focuses on one finding. Al trading
improves efficiency in normal market conditions, but during market stress, it amplifies systemic
fragility. This signifies the need for strong macroprudential supervision and flexible governance
frameworks. Systemic risks such as herding, feedback loops, opacity, and adversarial vulnerabilities are
further worsened by regulatory gaps.

6. Discussion

The objective of this paper was to examine how Al in high-frequency and autonomous trading can
amplify systemic volatility, and to propose a governance framework that reduces these vulnerabilities.
While automated trading systems may improve liquidity, speed, and price discovery under stable market
conditions, they also tend to magnify systemic fragility during stress events. Risks such as algorithmic
herding, flash crashes, feedback loops, model opacity, and regulatory blind spots emerge through
multiple channels. The findings of the study are consistence with the previous academic research
conducted by Serrano (2020), who argued that algorithmic herding intensifies intraday fragility;
Khandani and Lo (2011) linked cascading losses to strategy convergence; how automated execution of
orders resulted the 2010 Flash Crash was illustrated by Kirilenko et al. (2017) and Danielsson et al.
(2022) highlighting the misalignment between local efficiency and global resilience. When taken
together, these perceptions offer solid evidence confirming that Al is not just a technological tool but a
systemic amplifier, one that can quickly transform the localised trading volatility into global financial
disturbances if left unchecked.

Based on the above discussions and the scientific evidence, we propose the following regulatory
framework to be adopted by regulators, stock exchanges, financial institutions, authorities, supervisors,
and cross-border institutions to mitigate the systemic risk arising from Al-augmented trading. Building
on the evidence from Gao et al. (2024), regulators and exchanges under extreme but plausible conditions
must conduct agent-based stress simulators of Al trading to anticipate flash crash dynamics and liquidity
evaporation. The financial institutions should be motivated or mandated to use diverse Al architectures
and data sources to avoid systemic monocultures. This reduces the possibility of correlated failures as
warned by Danielsson et al. (2022). Using modern techniques such as XAl and post-hoc interpretability
frameworks, regulatory authorities should enforce basic explainability standards for Al trading. As
pointed out by Vancsura et al. (2025), they may not eliminate opacity completely but will strengthen
accountability and oversight. Al-assisted regulatory systems, which are capable of real-time
surveillance and adaptive response, must be adopted by supervisors, and they must progress beyond
static, rule-based monitoring systems as suggested by O’Halloran and Nowaczyk (2019). Both the
International Organization of Securities Commissions (2025) and the International Monetary Fund
(2024) highlight that fragmented oversight leaves crucial blind spots. So, the regulators must pursue
international cooperation and harmonise standards across jurisdictions, since Al-driven risk
transmission is a global phenomenon.

Although the proposed framework highlights important governance principles, it becomes more
valuable when operationalised through quantifiable metrics and case-based applications. To measure
fragility due to Al-trading, regulators could use intraday volatility indices, liquidity coverage ratios
(LCRs), or order-to-trade ratios (OTRs). Model concentration scores could be used to gauge the
dependence on shared datasets, cloud providers, or model vendors to monitor algorithmic convergence.
To evaluate model opacity, explainability audits can be used, and companies must show that
interpretable methods like SHapley Additive exPlanations (SHAP) or Local Interpretable Model
Agnostic Explanations (LIME) are used to create Al decision pathways. In addition to traditional
balance sheet simulations, agent-based market simulators should be included in stress testing. This will
allow regulators to foresee feedback loops and liquidity spirals in the event of a crisis. For instance, the
framework would provide directions to regulators to trigger real-time circuit-breaker stress tests across
Al trading models in the event of a flash crash. Supervisors could keep an eye on whether feedback
loops accelerate market contagion and whether liquidity evaporates disproportionately across particular
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asset classes. To restore stability in these situations, adaptive supervision may require staggered trade
execution or temporarily throttle algorithmic order submission. These operational scenarios show how
the proposed framework can be converted into a quantifiable instrument and useful regulatory measures.

Thus, the study contributes to the academic research and regulatory discussion by presenting not only
a conceptual framework but also practical pathways for its implementation. While existing studies
considered systemic risks as an isolated incident, this study offers an integrated conceptual framework
that systematically links transmission risk channels with governing principles. The paper’s dual focus
is to identify how Al and autonomous trading amplify systemic risks and to outline operational
regulatory responses, such as explainability audits, model diversity requirements, and stress-testing
tools. It stresses how Al in HFT presents systemic risks during periods of market stress, even though it
can be beneficial in stable market conditions. Diverse models, layered monitoring, explainability and
transparency, dynamic supervision, and cross-border regulatory cooperation will be necessary for
effective governance. Policy makers can only strike a balance between the need for financial stability
and efficiency gains from Al by establishing such a framework. Future research should test this
conceptual framework empirically using real trading data and simulation models. Comparative research
across jurisdictions may show the impact of regulatory variation on systemic risk associated with Al.
Resilient governance strategies will be informed by a deeper understanding of explainable Al, stress
testing, and cross-market contagion mechanisms.
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